Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,8-Dibromo-4,10-dichloro-6*H*,12*H*-5,11-methanodibenzo[*b*,*f*][1,5]diazocine

Kai-Xian Zhu,^a Donald C. Craig^b and Andrew C. Try^a*

^aDepartment of Chemistry and Biomolecular Sciences, Building F7B, Macquarie University, Sydney, NSW 2109, Australia, and ^bSchool of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia Correspondence e-mail: andrew.try@mq.edu.au

Received 31 July 2008; accepted 14 August 2008

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.020 Å; R factor = 0.057; wR factor = 0.062; data-to-parameter ratio = 7.4.

The title compound, $C_{15}H_{10}Br_2Cl_2N_2$, a 2,8-dibromo-4,10dichloro Tröger's base analogue derived from 4-bromo-2chloroaniline, has a dihedral angle of 110.9 (10)° between the two aryl rings, the largest yet measured for a simple dibenzo analogue.

Related literature

For related literature on the synthesis and crystal structures of dihalogenated Tröger's base analogues, see: Jensen & Wärnmark (2001); Faroughi *et al.* (2006*a*, 2007*a*,*b*). For Tröger's base analogues substituted with multiple electron-withdrawing groups, see: Faroughi *et al.* (2006*b*); Bhuiyan *et al.* (2006, 2007); Vande Velde *et al.* (2008). For reactions of halogenated Tröger's base analogues, see: Jensen *et al.* (2002); Hof *et al.* (2005). For literature on racemization of Tröger's base analogues and the effect of substituents *ortho* to the diazocine N atoms, see: Lenev *et al.* (2006).

Experimental

Crystal data $C_{15}H_{10}Br_2Cl_2N_2$ $M_r = 449.0$

Orthorhombic, $Pca2_1$ a = 7.910 (2) Å b = 12.601 (3) Å c = 15.230 (4) Å $V = 1518.0 (7) \text{ Å}^{3}$ Z = 4

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: analytical (de Meulenaer & Tompa, 1965) $T_{min} = 0.52, T_{max} = 0.69$ 1394 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.061$ S = 1.611394 reflections 189 parameters Mo $K\alpha$ radiation $\mu = 5.64 \text{ mm}^{-1}$ T = 294 K $0.30 \times 0.12 \times 0.07 \text{ mm}$

1394 independent reflections 1028 reflections with $I > 2\sigma(I)$ 1 standard reflection frequency: 30 min intensity decay: none

H-atom parameters constrained $\Delta \rho_{max} = 0.98 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -1.02 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983) Flack parameter: 0.09 (2)

Data collection: *CAD-4* (Schagen *et al.*, 1989); cell refinement: *CAD-4*; data reduction: local program; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *RAELS* (Rae, 1996); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: local programs.

The authors thank Macquarie University for the award of a Macquarie University Research Development Grant to ACT.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2290).

References

Altomare, A., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

- Bhuiyan, M. D. H., Jensen, P. & Try, A. C. (2007). Acta Cryst. E63, 04393.
- Bhuiyan, M. D. H., Try, A. C., Klepetko, J. & Turner, P. (2006). Acta Cryst. E62, 04887–04888.
- Faroughi, M., Try, A. C., Klepetko, J. & Turner, P. (2007*a*). *Tetrahedron Lett.* **48**, 6548–6551.
- Faroughi, M., Try, A. C. & Turner, P. (2006a). Acta Cryst. E62, 03674-03675.
- Faroughi, M., Try, A. C. & Turner, P. (2006b). Acta Cryst. E62, o3893-o3894.

Faroughi, M., Try, A. C. & Turner, P. (2007b). Acta Cryst. E63, o2695.

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hof, F., Schar, M., Scofield, D. M., Fischer, F., Diederich, F. & Sergeyev, S. (2005). *Helv. Chim. Acta*, 88, 2333–2344.
- Jensen, J., Strozyk, M. & Wärnmark, K. (2002). Synthesis, pp. 2761-2765.
- Jensen, J. & Wärnmark, K. (2001). Synthesis, pp. 1873–1877.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Lenev, D. A., Lyssenko, K. A., Golovanov, D. G., Buss, V. & Kostyanovsky, R. G. (2006). Chem. Eur. J. 12, 6412–6418.
- Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
- Rae, A. D. (1996). RAELS. University of New South Wales, Australia.
- Schagen, J. D., Straver, L., van Meurs, F. & Williams, G. (1989). CAD-4 Manual. Enraf-Nonius, Delft, The Netherlands.
- Vande Velde, C. M. L., Didier, D., Blockhuys, F. & Sergeyev, S. (2008). Acta Cryst. E64, 0538.

supplementary materials

Acta Cryst. (2008). E64, 01797 [doi:10.1107/S1600536808026226]

2,8-Dibromo-4,10-dichloro-6H,12H-5,11-methanodibenzo[b,f][1,5]diazocine

K.-X. Zhu, D. C. Craig and A. C. Try

Comment

Tröger's base analogues bearing electron-withdrawing groups were long thought to be difficult, if not impossible, to prepare. However, the synthesis of dihalogenated (Jensen & Wärnmark, 2001), octafluoro (Vande Velde *et al.*, 2008) and tetranitro (Bhuiyan *et al.*, 2007) Tröger's base analogues highlight the possibilities that now exist in terms of incorporating electronwithdrawing groups on the starting anilines. The synthetic utility of halogen-substituted Tröger's base analogue has been demonstrated with their conversion to alkyne- (Jensen & Wärnmark, 2001; Jensen *et al.*, 2002) and functionalized phenyl-(Hof *et al.*, 2005) substituted analogues, among others. It is noteworthy that crystal structures of several other 2,4,8,10-tetrasubstituted Tröger's base analogues exhibit large dihedral angles that are close to that in (I). Tröger's base analogues are known to undergo racemization in acidic solution, however the presence of a substituent at the *ortho*-position, relative to the bridge nitrogen atoms, has been shown to increase the racemization barrier (Lenev *et al.*, 2006).

The molecular structure of (I) is shown in Fig. 1 and it was prepared as outlined in Fig. 2.

Experimental

4-Bromo-2-chloroaniline (1 g, 4.84 mmol) and paraformaldehyde (232 mg, 7.74 mmol) were added to an ice-cold solution of trifluoroacetic acid (10 ml). The reaction mixture was then stirred in dark at room temperature for 7 days under an atmosphere of argon. The ice-cold reaction mixture was basified by the dropwise addition of a mixture of ammonia (28%, 20 ml) and water (40 ml), followed by the additon of a saturated sodium hydrogen carbonate solution (20 ml). The resultant mixture was then extracted with dichloromethane (3 *x* 20 ml) and the combined organic layers were washed with brine (40 ml), dried over anhydrous sodium sulfate, filtered and evaporated to dryness. The crude product was chromatographed (silica gel, dichloromethane:hexane 8:2) to afford 2,8-dibromo-4,10-dichloro-6*H*,12*H*-5,11-methanodibenzo [*b*,*f*][1,5]diazocine (I) (613 mg, 56%) as a white solid and as a racemic mixture: m.p. 471–472 K; ¹H NMR (400 MHz, CDCl₃) δ 4.21–4.33 (4*H*, m), 4.55 (2*H*, d, *J* 17.3 Hz), 7.04 (2*H*, d, *J* 2.1 Hz), 7.41 (2*H*, d, *J* 2.1 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 54.37, 67.32, 117.15, 128.49, 130.17, 131.02, 131.71, 142.33. Analysis found: C 40.46; H 2.22; N 6.46; C₁₅H₁₀Br₂Cl₂N₂ requires C 40.13; H 2.25; N 6.24. Single crystals were obtained from slow evaporation from dichloromethane solution of (I).

Refinement

Hydrogen atoms were included in positions calculated each cycle (C—H = 1.0 Å), and were assigned thermal parameters equal to their bonded atom. The maximum and minimum electron density peaks were located 0.73 and 1.20Å from the Cl2 and Br1 atoms, respectively.

Figures

Fig. 1. *ORTEPII* (Johnson, 1976) plot of (I), with ellipsoids at the 10% probability level. H atoms are drawn as spheres of arbitrary radius.

Fig. 2. Synthetic scheme for the synthesis of (I) showing the numbering system used in naming the compound.

2,8-Dibromo-4,10-dichloro-6H,12H-5,11- methanodibenzo[b,f][1,5]diazocine

Crystal data	
$C_{15}H_{10}Br_2Cl_2N_2$	$D_{\rm x} = 1.96 {\rm ~Mg~m}^{-3}$
$M_r = 449.0$	Melting point: 471 K
Orthorhombic, <i>Pca</i> 2 ₁	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2c -2ac	Cell parameters from 11 reflections
a = 7.910 (2) Å	$\theta = 10 - 11^{\circ}$
b = 12.601 (3) Å	$\mu = 5.64 \text{ mm}^{-1}$
c = 15.230 (4) Å	T = 294 K
V = 1518.0 (7) Å ³	Prism, colourless
Z = 4	$0.30\times0.12\times0.07~mm$
$F_{000} = 872.0$	
Data collection	
Enraf-Nonius CAD-4 diffractometer	$\theta_{max} = 25^{\circ}$
ω –2 θ scans	$h = 0 \rightarrow 9$
Absorption correction: analytical de Meulenaer & Tompa (1965)	$k = 0 \rightarrow 14$
$T_{\min} = 0.52, \ T_{\max} = 0.69$	$l = -18 \rightarrow 0$
1394 measured reflections	1 standard reflections
1394 independent reflections	every 30 min
1028 reflections with $I > 2\sigma(I)$	intensity decay: none

Refinement on F $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.061$ S = 1.611394 reflections 189 parameters H-atom parameters constrained $w = 1/[\sigma^{2}(F) + 0.0004F^{2}]$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.98 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -1.02 \text{ e } \text{Å}^{-3}$ Extinction correction: none Absolute structure: Flack (1983), 0 Friedel pairs Flack parameter: 0.09 (2)

Refinement

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.8061 (2)	0.6867(1)	0.3991 (1)	0.0585 (5)
Br2	0.2324 (2)	0.0800(1)	0.0428 (2)	0.0527 (5)
C11	0.9770 (5)	0.5167 (4)	0.0779 (3)	0.057(1)
Cl2	0.5654 (5)	0.0565 (3)	0.3603 (3)	0.052(1)
N1	0.9460 (14)	0.3064 (10)	0.1658 (8)	0.041 (3)
N2	0.8319 (15)	0.1842 (9)	0.2739 (8)	0.044 (3)
C1	0.9798 (19)	0.2123 (12)	0.2198 (10)	0.044 (4)
C2	0.8998 (18)	0.3929 (12)	0.2193 (10)	0.043 (4)
C3	0.8445 (18)	0.3790 (11)	0.3054 (8)	0.041 (4)
C4	0.817 (2)	0.2693 (12)	0.3414 (8)	0.049 (4)
C5	0.6842 (19)	0.1696 (11)	0.2226 (9)	0.039 (4)
C6	0.6740 (19)	0.2086 (11)	0.1360 (9)	0.036 (4)
C7	0.8206 (17)	0.2753 (12)	0.0978 (9)	0.040 (4)
C8	0.9155 (17)	0.4984 (13)	0.1855 (9)	0.043 (4)
C9	0.8825 (19)	0.5861 (12)	0.2397 (11)	0.048 (4)
C10	0.839 (2)	0.5684 (13)	0.3247 (11)	0.050 (4)
C11	0.818 (2)	0.4666 (13)	0.3570 (10)	0.056 (4)
C12	0.5565 (17)	0.1082 (10)	0.2538 (8)	0.031 (3)
C13	0.4158 (17)	0.0854 (10)	0.2036 (8)	0.035 (3)
C14	0.4117 (17)	0.1221 (11)	0.1168 (9)	0.040 (4)
C15	0.5433 (19)	0.1819 (10)	0.0853 (9)	0.034 (3)
H1C1	1.0780	0.2273	0.2593	0.044
H2C1	1.0078	0.1513	0.1804	0.044
H1C4	0.7008	0.2660	0.3674	0.049
H2C4	0.9027	0.2559	0.3883	0.049
H1C7	0.7726	0.3410	0.0708	0.040
H2C7	0.8794	0.2326	0.0517	0.040
HC9	0.8906	0.6600	0.2162	0.048
HC11	0.7825	0.4567	0.4195	0.056
HC13	0.3194	0.0438	0.2286	0.035
HC15	0.5411	0.2061	0.0228	0.034

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.060(1)	0.060(1)	0.0549 (9)	-0.0011 (8)	-0.001 (1)	-0.0138 (9)
Br2	0.0470 (9)	0.0650 (9)	0.0461 (8)	-0.0118 (8)	-0.0026 (9)	-0.0091 (9)
Cl1	0.061 (3)	0.066 (3)	0.044 (2)	-0.019 (2)	0.010(2)	0.000(2)
Cl2	0.063 (3)	0.056 (2)	0.037 (2)	0.000 (2)	0.006 (2)	0.018 (2)
N1	0.029 (7)	0.058 (8)	0.037 (7)	0.001 (6)	0.002 (6)	-0.003 (6)
N2	0.046 (7)	0.048 (7)	0.038 (7)	0.004 (6)	-0.009 (6)	0.020 (6)
C1	0.029 (9)	0.067 (9)	0.036 (8)	0.005 (8)	-0.016 (7)	0.012 (8)
C2	0.051 (9)	0.043 (9)	0.034 (8)	0.009 (8)	0.020 (8)	-0.006(7)
C3	0.045 (9)	0.059 (9)	0.019 (8)	-0.012 (8)	-0.004 (7)	-0.005 (7)

supplementary materials

C4	0.083 (9)	0.053 (8)	0.013 (7)	0.004 (9)	-0.006 (7)	0.007 (7)
C5	0.048 (9)	0.043 (9)	0.026 (7)	0.000 (7)	0.013 (7)	0.007 (7)
C6	0.039 (8)	0.042 (8)	0.026 (8)	0.010 (8)	0.002 (6)	-0.006 (7)
C7	0.037 (8)	0.052 (9)	0.030 (8)	-0.007 (8)	0.007 (7)	-0.002 (7)
C8	0.029 (8)	0.062 (9)	0.039 (9)	-0.002 (8)	-0.002 (7)	0.004 (9)
C9	0.047 (9)	0.038 (9)	0.059 (9)	-0.010 (8)	-0.001 (8)	-0.007 (8)
C10	0.047 (9)	0.057 (9)	0.046 (9)	-0.005 (8)	0.017 (8)	-0.007 (8)
C11	0.085 (9)	0.052 (9)	0.029 (8)	-0.011 (9)	0.009 (9)	-0.007 (8)
C12	0.037 (8)	0.032 (8)	0.024 (7)	0.009 (7)	0.010 (6)	-0.002 (6)
C13	0.046 (9)	0.043 (9)	0.016 (6)	0.014 (8)	0.001 (6)	0.000(7)
C14	0.029 (8)	0.039 (8)	0.052 (9)	0.006 (7)	0.010(7)	-0.015 (8)
C15	0.034 (8)	0.039 (8)	0.027 (7)	0.004 (7)	0.009 (7)	-0.004 (7)

Geometric parameters (Å, °)

Br1—C10	1.890 (15)	C4—H2C4	1.000
Br2—C14	1.888 (14)	C5—C6	1.410 (18)
Cl1—C8	1.724 (14)	C5—C12	1.358 (18)
Cl2—C12	1.750 (13)	C6—C7	1.546 (20)
N1—C1	1.468 (18)	C6—C15	1.333 (19)
N1—C2	1.409 (17)	С7—Н1С7	1.000
N1—C7	1.487 (18)	С7—Н2С7	1.000
N2—C1	1.474 (19)	C8—C9	1.404 (20)
N2—C4	1.491 (18)	C9—C10	1.357 (19)
N2—C5	1.417 (18)	С9—НС9	1.000
C1—H1C1	1.000	C10—C11	1.385 (21)
C1—H2C1	1.000	C11—HC11	1.000
C2—C3	1.394 (18)	C12—C13	1.381 (17)
C2—C8	1.431 (20)	C13—C14	1.402 (18)
C3—C4	1.503 (20)	C13—HC13	1.000
C3—C11	1.371 (20)	C14—C15	1.371 (19)
C4—H1C4	1.000	С15—НС15	1.000
C1—N1—C2	110 4 (12)	N1	1125(11)
e e z	110.1(12)	$N_{1} - C_{1} - C_{0}$	112.3 (11)
C1—N1—C7	107.4 (11)	N1—C7—H1C7	108.7
C1—N1—C7 C2—N1—C7	107.4 (11) 115.7 (11)	N1—C7—H1C7 N1—C7—H2C7	108.7 108.7
C1—N1—C7 C2—N1—C7 C1—N2—C4	107.4 (11) 115.7 (11) 106.0 (11)	N1—C7—H1C7 N1—C7—H2C7 C6—C7—H1C7	108.7 108.7 108.7
C1—N1—C7 C2—N1—C7 C1—N2—C4 C1—N2—C5	107.4 (11) 115.7 (11) 106.0 (11) 112.2 (11)	N1C7H1C7 N1C7H2C7 C6C7H1C7 C6C7H2C7	108.7 108.7 108.7 108.7
C1—N1—C7 C2—N1—C7 C1—N2—C4 C1—N2—C5 C4—N2—C5	107.4 (11) 115.7 (11) 106.0 (11) 112.2 (11) 114.1 (12)	N1C7H1C7 N1C7H2C7 C6C7H1C7 C6C7H2C7 H1C7C7H2C7	108.7 108.7 108.7 108.7 108.7 108.7 109.5
C1—N1—C7 C2—N1—C7 C1—N2—C4 C1—N2—C5 C4—N2—C5 N1—C1—N2	107.4 (11) 115.7 (11) 106.0 (11) 112.2 (11) 114.1 (12) 111.3 (11)	N1C7H1C7 N1C7H2C7 C6C7H1C7 C6C7H2C7 H1C7C7H2C7 C11C8C2	108.7 108.7 108.7 108.7 108.7 109.5 119.3 (11)
C1-N1-C7 C2-N1-C7 C1-N2-C4 C1-N2-C5 C4-N2-C5 N1-C1-N2 N1-C1-H1C1	110.1 (12) 107.4 (11) 115.7 (11) 106.0 (11) 112.2 (11) 114.1 (12) 111.3 (11) 109.0	N1C7H1C7 N1C7H2C7 C6C7H1C7 C6C7H2C7 H1C7C7H2C7 C11C8C2 C11C8C9	112.3 (11) 108.7 108.7 108.7 108.7 109.5 119.3 (11) 120.4 (12)
C1-N1-C7 C2-N1-C7 C1-N2-C4 C1-N2-C5 C4-N2-C5 N1-C1-N2 N1-C1-H1C1 N1-C1-H2C1	110.1 (12) 107.4 (11) 115.7 (11) 106.0 (11) 112.2 (11) 114.1 (12) 111.3 (11) 109.0 109.0	N1C7H1C7 N1C7H2C7 C6C7H1C7 C6C7H2C7 H1C7C7H2C7 C11C8C2 C11C8C9 C2C8C9	112.3 (11) 108.7 108.7 108.7 108.7 109.5 119.3 (11) 120.4 (12) 120.2 (12)
C1-N1-C7 C2-N1-C7 C1-N2-C4 C1-N2-C5 C4-N2-C5 N1-C1-N2 N1-C1-H1C1 N1-C1-H2C1 N2-C1-H1C1	107.4 (11) 107.4 (11) 115.7 (11) 106.0 (11) 112.2 (11) 114.1 (12) 111.3 (11) 109.0 109.0 109.0	N1-C7-H1C7 N1-C7-H2C7 C6-C7-H1C7 C6-C7-H2C7 H1C7-C7-H2C7 C11-C8-C2 C11-C8-C9 C2-C8-C9 C8-C9-C10	112.3 (11) 108.7 108.7 108.7 108.7 109.5 119.3 (11) 120.4 (12) 120.2 (12) 118.6 (15)
C1-N1-C7 C2-N1-C7 C1-N2-C4 C1-N2-C5 C4-N2-C5 N1-C1-N2 N1-C1-H1C1 N1-C1-H2C1 N2-C1-H1C1 N2-C1-H2C1	110.1 (12) 107.4 (11) 115.7 (11) 106.0 (11) 112.2 (11) 114.1 (12) 111.3 (11) 109.0 109.0 109.0	N1C7H1C7 N1C7H2C7 C6C7H2C7 H1C7C7H2C7 C11C8C2 C11C8C9 C2C8C9 C2C8C9 C8C9C10 C8C9HC9	112.3 (11) 108.7 108.7 108.7 108.7 109.5 119.3 (11) 120.4 (12) 120.2 (12) 118.6 (15) 120.7
C1-N1-C7 C2-N1-C7 C1-N2-C4 C1-N2-C5 C4-N2-C5 N1-C1-N2 N1-C1-H1C1 N1-C1-H1C1 N1-C1-H2C1 N2-C1-H1C1 N2-C1-H2C1 H1C1-C1-H2C1	107.4 (11) 115.7 (11) 106.0 (11) 112.2 (11) 114.1 (12) 111.3 (11) 109.0 109.0 109.0 109.5	N1C7H1C7 N1C7H2C7 C6C7H2C7 H1C7C7H2C7 C11C8C2 C11C8C9 C2C8C9 C2C8C9 C8C9C10 C8C9HC9 C10C9HC9	112.3 (11) 108.7 108.7 108.7 108.7 109.5 119.3 (11) 120.4 (12) 120.2 (12) 118.6 (15) 120.7 120.7
C1 - N1 - C2 $C1 - N1 - C7$ $C2 - N1 - C7$ $C1 - N2 - C4$ $C1 - N2 - C5$ $N1 - C1 - N2$ $N1 - C1 - H1C1$ $N1 - C1 - H2C1$ $N2 - C1 - H2C1$ $H1C1 - C1 - H2C1$ $N1 - C2 - C3$	110.1 (12) 107.4 (11) 115.7 (11) 106.0 (11) 112.2 (11) 114.1 (12) 111.3 (11) 109.0 109.0 109.0 109.0 109.5 121.9 (14)	N1C7H1C7 N1C7H2C7 C6C7H2C7 H1C7C7H2C7 C11C8C2 C11C8C9 C2C8C9 C2C8C9 C8C9HC9 C10C9HC9 Br1C10C9	112.5 (11) 108.7 108.7 108.7 108.7 109.5 119.3 (11) 120.4 (12) 120.2 (12) 118.6 (15) 120.7 120.7 118.5 (13)
C1 - N1 - C2 $C1 - N1 - C7$ $C2 - N1 - C7$ $C1 - N2 - C4$ $C1 - N2 - C5$ $N1 - C1 - N2$ $N1 - C1 - H1C1$ $N1 - C1 - H1C1$ $N2 - C1 - H1C1$ $N2 - C1 - H1C1$ $N2 - C1 - H2C1$ $H1C1 - C1 - H2C1$ $H1C1 - C1 - H2C1$ $N1 - C2 - C3$ $N1 - C2 - C8$	107.4 (11) 107.4 (11) 115.7 (11) 106.0 (11) 112.2 (11) 114.1 (12) 111.3 (11) 109.0 109.0 109.0 109.0 109.5 121.9 (14) 119.2 (12)	N1-C7-H1C7 N1-C7-H2C7 C6-C7-H2C7 H1C7-C7-H2C7 C11-C8-C2 C11-C8-C9 C2-C8-C9 C2-C8-C9 C8-C9-C10 C8-C9-HC9 C10-C9-HC9 Br1-C10-C9 Br1-C10-C11	112.5 (11) 108.7 108.7 108.7 108.7 109.5 119.3 (11) 120.4 (12) 120.2 (12) 118.6 (15) 120.7 120.7 118.5 (13) 120.0 (11)
C1 - N1 - C7 $C2 - N1 - C7$ $C2 - N1 - C7$ $C1 - N2 - C4$ $C1 - N2 - C5$ $C4 - N2 - C5$ $N1 - C1 - N2$ $N1 - C1 - H1C1$ $N1 - C1 - H2C1$ $N2 - C1 - H1C1$ $N2 - C1 - H2C1$ $H1C1 - C1 - H2C1$ $H1C1 - C1 - H2C1$ $N1 - C2 - C3$ $N1 - C2 - C8$ $C3 - C2 - C8$	110.1 (12) 107.4 (11) 115.7 (11) 106.0 (11) 112.2 (11) 114.1 (12) 111.3 (11) 109.0 109.0 109.0 109.0 109.5 121.9 (14) 119.2 (12) 118.8 (13)	N1-C7-H1C7 N1-C7-H2C7 C6-C7-H2C7 H1C7-C7-H2C7 C11-C8-C2 C11-C8-C2 C11-C8-C9 C2-C8-C9 C2-C8-C9 C8-C9-C10 C8-C9-HC9 C10-C9-HC9 Br1-C10-C9 Br1-C10-C11 C9-C10-C11	112.5 (11) 108.7 108.7 108.7 108.7 109.5 119.3 (11) 120.4 (12) 120.2 (12) 118.6 (15) 120.7 120.7 118.5 (13) 120.0 (11) 121.4 (15)
C1 - N1 - C2 $C1 - N1 - C7$ $C2 - N1 - C7$ $C1 - N2 - C4$ $C1 - N2 - C5$ $N1 - C1 - N2$ $N1 - C1 - H1C1$ $N1 - C1 - H2C1$ $N2 - C1 - H2C1$ $N2 - C1 - H2C1$ $H1C1 - C1 - H2C1$ $N1 - C2 - C3$ $N1 - C2 - C8$ $C3 - C2 - C8$ $C2 - C3 - C4$	110.1 (12) 107.4 (11) 115.7 (11) 106.0 (11) 112.2 (11) 114.1 (12) 111.3 (11) 109.0 109.0 109.0 109.0 109.5 121.9 (14) 119.2 (12) 118.8 (13) 120.3 (13)	N1 = C7 = C0 $N1 = C7 = H1C7$ $N1 = C7 = H2C7$ $C6 = C7 = H1C7$ $C6 = C7 = H2C7$ $H1C7 = C7 = H2C7$ $C11 = C8 = C2$ $C11 = C8 = C9$ $C2 = C8 = C9$ $C3 = C9 = HC9$ $C10 = C9 = HC9$ $Br1 = C10 = C9$ $Br1 = C10 = C11$ $C9 = C10 = C11$ $C3 = C11 = C10$	112.5 (11) 108.7 108.7 108.7 108.7 109.5 119.3 (11) 120.4 (12) 120.2 (12) 118.6 (15) 120.7 120.7 118.5 (13) 120.0 (11) 121.4 (15) 121.6 (14)

C4—C3—C11	120.6 (12)	C10-C11-HC11	119.2
N2—C4—C3	113.5 (10)	Cl2—C12—C5	120.5 (12)
N2-C4-H1C4	108.4	Cl2—C12—C13	117.9 (10)
N2-C4-H2C4	108.4	C5-C12-C13	121.6 (13)
C3—C4—H1C4	108.4	C12-C13-C14	118.2 (13)
C3—C4—H2C4	108.4	С12—С13—НС13	120.9
H1C4—C4—H2C4	109.5	C14—C13—HC13	120.9
N2—C5—C6	121.2 (13)	Br2-C14-C13	119.2 (11)
N2	119.6 (13)	Br2-C14-C15	121.0 (11)
C6—C5—C12	118.9 (15)	C13—C14—C15	119.6 (13)
C5—C6—C7	119.8 (13)	C6—C15—C14	121.6 (13)
C5—C6—C15	119.9 (14)	C6—C15—HC15	119.2
C7—C6—C15	120.1 (12)	C14—C15—HC15	119.2
C2—N1—C1—N2	57.5 (15)	C2-C3-C11-C10	2.3 (24)
C2-N1-C1-H1C1	-62.8	C2—C3—C11—HC11	-177.7
C2-N1-C1-H2C1	177.8	C4—C3—C11—C10	-178.6 (16)
C7—N1—C1—N2	-69.4 (15)	C4—C3—C11—HC11	1.4
C7—N1—C1—H1C1	170.3	N2C5C7	-4.4 (20)
C7—N1—C1—H2C1	50.8	N2-C5-C6-C15	171.2 (13)
C1—N1—C2—C3	-18.2 (18)	C12—C5—C6—C7	-177.9 (12)
C1—N1—C2—C8	159.5 (13)	C12—C5—C6—C15	-2.3 (20)
C7—N1—C2—C3	103.9 (16)	N2-C5-C12-Cl2	5.4 (18)
C7—N1—C2—C8	-78.3 (17)	N2	-175.2 (12)
C1—N1—C7—C6	44.6 (15)	C6—C5—C12—Cl2	179.1 (10)
C1—N1—C7—H1C7	165.1	C6—C5—C12—C13	-1.6 (20)
C1—N1—C7—H2C7	-75.8	C5—C6—C7—N1	-10.2 (17)
C2—N1—C7—C6	-79.1 (15)	С5—С6—С7—Н1С7	-130.7
C2—N1—C7—H1C7	41.3	C5—C6—C7—H2C7	110.2
C2—N1—C7—H2C7	160.4	C15-C6-C7-N1	174.2 (13)
C4—N2—C1—N1	-69.8 (13)	C15—C6—C7—H1C7	53.8
C4—N2—C1—H1C1	50.5	C15—C6—C7—H2C7	-65.3
C4—N2—C1—H2C1	169.9	C5—C6—C15—C14	3.9 (21)
C5—N2—C1—N1	55.3 (16)	C5—C6—C15—HC15	-176.1
C5—N2—C1—H1C1	175.6	C7—C6—C15—C14	179.5 (12)
C5—N2—C1—H2C1	-65.0	C7—C6—C15—HC15	-0.5
C1—N2—C4—C3	42.4 (15)	Cl1—C8—C9—C10	-178.1 (12)
C1—N2—C4—H1C4	163.0	Cl1—C8—C9—HC9	1.9
C1—N2—C4—H2C4	-78.2	C2—C8—C9—C10	1.4 (23)
C5—N2—C4—C3	-81.5 (16)	С2—С8—С9—НС9	-178.6
C5—N2—C4—H1C4	39.1	C8—C9—C10—Br1	176.8 (11)
C5—N2—C4—H2C4	157.9	C8—C9—C10—C11	-3.7 (25)
C1—N2—C5—C6	-17.3 (19)	HC9-C9-C10-Br1	-3.2
C1—N2—C5—C12	156.2 (13)	HC9—C9—C10—C11	176.3
C4—N2—C5—C6	103.2 (14)	Br1—C10—C11—C3	-178.6 (12)
C4—N2—C5—C12	-83.3 (16)	Br1-C10-C11-HC11	1.4
N1—C2—C3—C4	-5.9 (21)	C9—C10—C11—C3	1.9 (26)
N1—C2—C3—C11	173.3 (14)	C9—C10—C11—HC11	-178.1
C8—C2—C3—C4	176.4 (14)	Cl2—C12—C13—C14	-176.9 (10)
C8—C2—C3—C11	-4.4 (21)	Cl2—C12—C13—HC13	3.1

supplementary materials

N1-C2-C8-Cl1	4.3 (19)	C5-C12-C13-C14	3.7 (19)
N1-C2-C8-C9	-175.2 (13)	С5—С12—С13—НС13	-176.3
C3—C2—C8—Cl1	-177.9 (11)	C12-C13-C14-Br2	173.5 (9)
C3—C2—C8—C9	2.6 (21)	C12-C13-C14-C15	-2.1 (18)
C2—C3—C4—N2	-7.5 (20)	HC13-C13-C14-Br2	-6.5
C2—C3—C4—H1C4	-128.1	HC13-C13-C14-C15	177.9
C2—C3—C4—H2C4	113.1	Br2-C14-C15-C6	-177.3 (11)
C11—C3—C4—N2	173.3 (14)	Br2-C14-C15-HC15	2.7
C11—C3—C4—H1C4	52.7	C13—C14—C15—C6	-1.7 (20)
C11—C3—C4—H2C4	-66.1	C13-C14-C15-HC15	178.3

